
Understanding and Improving Service Discovery Understanding and Improving Service Discovery
in Hostile and Volatile Environmentsin Hostile and Volatile Environments

Chris Dabrowski (897)
Jesse Elder (897)
Kevin Mills (892)
Doug Montgomery (892)
Scott Rose (892)

“Agile Software for an Uncertain World”

NRC Review Panel
February 8, 2002

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m
Dynamic Discovery Protocols in EssenceDynamic Discovery Protocols in Essence
Dynamic discovery protocols enable network elements (including
software clients and services, as well as devices):

(1) to discover each other without prior arrangement,
(2) to express opportunities for collaboration,
(3) to compose themselves into larger collections that cooperate to

meet an application need, and
(4) to detect and adapt to changes in network topology.

Selected FirstSelected First--Generation Dynamic Discovery ProtocolsGeneration Dynamic Discovery Protocols

3-Party
Design

2-Party
Design

Adaptive
2/3-Party
Design

Vertically
Integrated
3-Party
Design

Network-
Dependent
3-Party Design Network-Dependent

2-Party Design

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Presentation OutlinePresentation Outline

� Project objective and plan (one slide)

� Accomplishments over past year (one slide)

� Context setting (two slides)
� Alternative architectures for service-discovery systems
� Technical approach to modeling and analysis in first phase of the project

� Understanding consistency-maintenance in service-discovery systems
under increasing communication failure (12 slides)

� Summary of progress to date (one slide)

� Plans for upcoming year (one slide)

� Addenda
� Additional details on consistency-maintenance experiments
� Issues relayed to Sun after correctness analysis of Jini specification
� Performance measurement results from Jini and UPnP implementations

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Phase I – characterize performance of selected service-discovery protocols
(Universal Plug-and-Play – UPnP – and Jini) as specified and implemented

� develop architectural models for each protocol
� establish performance benchmarks based on default or recommended

parameter values and on required or most likely implementation of behaviors

Phase II – design, simulate, and characterize self-adaptive mechanisms to
improve performance in volatile environments

� devise algorithms to adjust control parameters and behavior in each protocol
� simulate performance of each algorithm against benchmark performance
� select most promising algorithms for further development

Phase III – implement and validate the most promising algorithms in publicly
available reference software (from Sun Microsystems and Intel)

Project ObjectiveProject Objective
Research, design, and characterize self-adaptive mechanisms to improve
performance of discovery protocols in hostile and volatile environments.

Project Plan in Three PhasesProject Plan in Three Phases

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Modeling
� Completed Rapide architectural-description language model of UPnP

specification (Jini specification completed last year)
� Developed framework of (SLX) discrete-event simulation model for UPnP

(model patterned after publicly available Intel Linux implementation)

Analysis
� Explored correctness of Jini model against various consistency conditions;

found four areas of concern; briefed Sun’s Jini design team on findings (see
addendum for more information)

� Investigated consistency maintenance in Jini and UPnP models under
increasing interface-failure rate (technical subject of current talk)

Measurement (see addendum for more information)
� Designed independent benchmark service and scenarios for service-

discovery systems
� Created synthetic workload generation tools for emulating the behavior of

large scale, dynamic, ad-hoc networking environments
� Conducted baseline performance measurement experiments to compare the

performance of UPnP and Jini in benchmark scenarios

Accomplishments This YearAccomplishments This Year

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Two Party vs. Three Party ArchitecturesTwo Party vs. Three Party Architectures

Notification Request

(from Data View)

<<repositor y entr y>>

Parameter Notification Reques t

(from Data View)

<<repositor y entr y>>
Service Cache
<<repositor y>>

Notification Cache
<<repositor y>>

0..*0..*

Aggregates

Service Cache
<<repositor y>>

Service Repository
<<repositor y>>

Service Parameter Change Notification
<<repositor y>>

0..*0..*
LOCAL CACHE MANAGER
Start Aging Task()

11

SERVICE PROVIDER

SERVICE DESCRIPTION

Identify
Type
API
GUI
Attributes

(from Data View)

<<repositor y entr y>>

0..*0..*

Aggregates

11 owns

SERVICE CACHE MANAGER
discover Networ k Context()
<<not shr>> acti vate Manager Discovery()
activate Announce Processi ng()
start Matchi ng Task()
start Aging Task()
Service Cache M anager()

0..10..1

Contai ns

11

Contai ns

SERVICE MANAGER
discover Networ k Context()
<<not shr>> Cache Manager Discover y()
<<OPT>> Announce Ser vice Processing()
<<not shr>> start Renewal Task()
Service Manager()
<<not shr>> start Service Parameter Matchi ng Task()

11

Contai ns

0..10..1

0..*0..*

manages

0..*0..*

+info cache

0..*

+service i nfo
source

0..*

service infor mation collecti on

SERVICE USER
discover Networ k Context()
Service Discovery()
<<not shr>> start Renewal Task()
Service User()

0..10..1

0..*

0..*

0..*

0..*

invokes operati ons

0..*0..*

queries infor mation from

0..*

0..*

0..*

0..*

service availabilty
requests

0..*

0..*

0..*

0..*

service
availability
requests

Service
Manager

Service
Cache
Manager

Service
User

Service
Description

Service
ProviderService

Repository

Service
Cache

Notification
Cache

Notification
Request

Parameter
Change
Notification
Cache

Parameter
Change
Notification
Request

Local
Cache
Manager

Local
Service
Cache

Third Party

Notification Request

(from Data View)

<<repositor y entr y>>

Parameter Notification Reques t

(from Data View)

<<repositor y entr y>>
Service Cache
<<repositor y>>

Notification Cache
<<repositor y>>

0..*0..*

Aggregates

Service Cache
<<repositor y>>

Service Repository
<<repositor y>>

Service Parameter Change Notification
<<repositor y>>

0..*0..*
LOCAL CACHE MANAGER
Start Aging Task()

11

SERVICE PROVIDER

SERVICE DESCRIPTION

Identify
Type
API
GUI
Attributes

(from Data View)

<<repositor y entr y>>

0..*0..*

Aggregates

11 owns

SERVICE CACHE MANAGER
discover Networ k Context()
<<not shr>> acti vate Manager Discovery()
activate Announce Processi ng()
start Matchi ng Task()
start Aging Task()
Service Cache M anager()

0..10..1

Contai ns

11

Contai ns

SERVICE MANAGER
discover Networ k Context()
<<not shr>> Cache Manager Discover y()
<<OPT>> Announce Ser vice Processing()
<<not shr>> start Renewal Task()
Service Manager()
<<not shr>> start Service Parameter Matchi ng Task()

11

Contai ns

0..10..1

0..*0..*

manages

0..*0..*

+info cache

0..*

+service i nfo
source

0..*

service infor mation collecti on

SERVICE USER

Notification Request

(from Data View)

<<repositor y entr y>>

Parameter Notification Reques t

(from Data View)

<<repositor y entr y>>
Service Cache
<<repositor y>>

Notification Cache
<<repositor y>>

0..*0..*

Aggregates

Service Cache
<<repositor y>>

Service Repository
<<repositor y>>

Service Parameter Change Notification
<<repositor y>>

0..*0..*
LOCAL CACHE MANAGER
Start Aging Task()

11

SERVICE PROVIDER

SERVICE DESCRIPTION

Identify
Type
API
GUI
Attributes

(from Data View)

<<repositor y entr y>>

0..*0..*

Aggregates

11 owns

SERVICE CACHE MANAGER
discover Networ k Context()
<<not shr>> acti vate Manager Discovery()
activate Announce Processi ng()
start Matchi ng Task()
start Aging Task()
Service Cache M anager()

0..10..1

Contai ns

11

Contai ns

SERVICE MANAGER
discover Networ k Context()
<<not shr>> Cache Manager Discover y()
<<OPT>> Announce Ser vice Processing()
<<not shr>> start Renewal Task()
Service Manager()
<<not shr>> start Service Parameter Matchi ng Task()

11

Contai ns

0..10..1

0..*0..*

manages

0..*0..*

+info cache

0..*

+service i nfo
source

0..*

service infor mation collecti on

SERVICE USER
discover Networ k Context()
Service Discovery()
<<not shr>> start Renewal Task()
Service User()

0..10..1

0..*

0..*

0..*

0..*

invokes operati ons

0..*0..*

queries infor mation from

0..*

0..*

0..*

0..*

service availabilty
requests

service availabilty
requests

0..*

0..*

0..*

0..*

service
availability
requests

Service
Manager

Service
Cache
Manager

Service
User

Service
Description

Service
ProviderService

Repository

Service
Cache

Notification
Cache

Notification
Request

Parameter
Change
Notification
Cache

Parameter
Change
Notification
Request

Local
Cache
Manager

Local
Service
Cache

Third Party

SU

SM
SCM

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m
Phase I Modeling Approach: Use Phase I Modeling Approach: Use Rapide Rapide to Model and to Model and

Understand Dynamics of Understand Dynamics of Jini Jini and UPnPand UPnP

-- **
-- ** 3.3 DIRECTED DISCOVERY CLIENT INTERFACE **
-- **
-- This is used by all JINI entities in directed
-- discovery mode. It is part of the SCM_Discovery
-- Module. Sends Unicast messages to SCMs on list of
-- SCMS to be discovered until all SCMS are found.
-- Receives updates from SCM DB of discovered SCMs and
-- removes SCMs accordingly
-- NOTE: Failure and recovery behavior are not
-- yet defined and need reviw.
TYPE Directed_Discovery_Client
 (SourceID : IP_Address; InSCMsToDiscover : SCMList; StartOption : DD_Code;
 InRequestInterval : TimeUnit; InMaxNumTries : integer; InPV : ProtocolVersion)
IS INTERFACE
SERVICE DDC_SEND_DIR : DIRECTED_2_STEP_PROTOCOL;
SERVICE DISC_MODES : dual SCM_DISCOVERY_MODES;
SERVICE DD_SCM_Update : DD_SCM_Update;
SERVICE SCM_Update : SCM_Update;
SERVICE DB_Update : dual DB_Update;
SERVICE NODE_FAILURES : NODE_FAILURES; -- events for failure and recovery.
ACTION
 IN Send_Requests(),
 BeginDirectedDiscovery();
BEHAVIOR
 action animation_Iam (name: string);
 MySourceID : VAR IP_Address;
 PV : VAR ProtocolVersion;

Specification Model

Analyze
POSETs

Assess Correctness,
Performance, &
Complexity

Remote Method Invocation

Unicast Links

Lazy Discovery Multicast Group

Service
Manager

Service
User

Service
Cache

Manager

Aggressive Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy Discovery Multicast Group

Service
Manager
Service

Manager

Service
User

Service
User

Service
Cache

Manager

Service
Cache

Manager

Aggressive Discovery Multicast Group

SM4 SCM3 T ATT API GUI 20 30AddService50

SU8 5 1 2 S XYZ ALLFindService10

SM4 GROUP1GroupJoin10

SCM1 SM4LinkFail5

SM4NodeFail5

ParametersCommandTime

SM4 SCM3 T ATT API GUI 20 30AddService50

SU8 5 1 2 S XYZ ALLFindService10

SM4 GROUP1GroupJoin10

SCM1 SM4LinkFail5

SM4NodeFail5

ParametersCommandTime

TopologyScenario

Execute with
Rapide

For All (SM, SD, SCM):
 (SM, SD) IsElementOf SCM registered-services (CC1)
 implies SCM IsElementOf SM discovered-SCMs

For All (SM, SD, SCM):
 SCM IsElementOf SM discovered-SCMs & (CC2)
 (SD) IsElementOf SM managed-services

 implies (SM, SD) IsElementOf SCM registered-services
For All (SM, SD, SCM):

 SCM IsElementOf SM discovered-SCMs & (CC3)
 (SM, SD) IsElementOf SCM registered-services &
 NOT (SCM IsElementOf SM persistent-list)

 implies Intersection (SM GroupsToJoin, SCM GroupsMemberOf)
For All (SM, SD, SCM, SU, NR):
 (SU, NR) IsElementOf SCM requested-notifications & (CC4)

(SM, SD) IsElementOf SCM registered-services &
 Matches((SM, SD), (SU,NR))

 implies (SM, SD) IsElementOf SU matched-services

For All (SM, SD, SCM):
 (SM, SD) IsElementOf SCM registered-services (CC1)
 implies SCM IsElementOf SM discovered-SCMs

For All (SM, SD, SCM):
 SCM IsElementOf SM discovered-SCMs & (CC2)
 (SD) IsElementOf SM managed-services

 implies (SM, SD) IsElementOf SCM registered-services
For All (SM, SD, SCM):

 SCM IsElementOf SM discovered-SCMs & (CC3)
 (SM, SD) IsElementOf SCM registered-services &
 NOT (SCM IsElementOf SM persistent-list)

 implies Intersection (SM GroupsToJoin, SCM GroupsMemberOf)
For All (SM, SD, SCM, SU, NR):
 (SU, NR) IsElementOf SCM requested-notifications & (CC4)

(SM, SD) IsElementOf SCM registered-services &
 Matches((SM, SD), (SU,NR))

 implies (SM, SD) IsElementOf SU matched-services

Consistency
Conditions

-- **
-- ** 3.3 DIRECTED DISCOVERY CLIENT INTERFACE **
-- **
-- This is used by all JINI entities in directed
-- discovery mode. It is part of the SCM_Discovery
-- Module. Sends Unicast messages to SCMs on list of
-- SCMS to be discovered until all SCMS are found.
-- Receives updates from SCM DB of discovered SCMs and
-- removes SCMs accordingly
-- NOTE: Failure and recovery behavior are not
-- yet defined and need reviw.
TYPE Directed_Discovery_Client
 (SourceID : IP_Address; InSCMsToDiscover : SCMList; StartOption : DD_Code;
 InRequestInterval : TimeUnit; InMaxNumTries : integer; InPV : ProtocolVersion)
IS INTERFACE
SERVICE DDC_SEND_DIR : DIRECTED_2_STEP_PROTOCOL;
SERVICE DISC_MODES : dual SCM_DISCOVERY_MODES;
SERVICE DD_SCM_Update : DD_SCM_Update;
SERVICE SCM_Update : SCM_Update;
SERVICE DB_Update : dual DB_Update;
SERVICE NODE_FAILURES : NODE_FAILURES; -- events for failure and recovery.
ACTION
 IN Send_Requests(),
 BeginDirectedDiscovery();
BEHAVIOR
 action animation_Iam (name: string);
 MySourceID : VAR IP_Address;
 PV : VAR ProtocolVersion;

Specification Model

Analyze
POSETs

Assess Correctness,
Performance, &
Complexity

Remote Method Invocation

Unicast Links

Lazy Discovery Multicast Group

Service
Manager

Service
User

Service
Cache

Manager

Aggressive Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy Discovery Multicast Group

Service
Manager
Service

Manager

Service
User

Service
User

Service
Cache

Manager

Service
Cache

Manager

Aggressive Discovery Multicast Group

SM4 SCM3 T ATT API GUI 20 30AddService50

SU8 5 1 2 S XYZ ALLFindService10

SM4 GROUP1GroupJoin10

SCM1 SM4LinkFail5

SM4NodeFail5

ParametersCommandTime

SM4 SCM3 T ATT API GUI 20 30AddService50

SU8 5 1 2 S XYZ ALLFindService10

SM4 GROUP1GroupJoin10

SCM1 SM4LinkFail5

SM4NodeFail5

ParametersCommandTime

TopologyScenario

Execute with
Rapide

For All (SM, SD, SCM):
 (SM, SD) IsElementOf SCM registered-services (CC1)
 implies SCM IsElementOf SM discovered-SCMs

For All (SM, SD, SCM):
 SCM IsElementOf SM discovered-SCMs & (CC2)
 (SD) IsElementOf SM managed-services

 implies (SM, SD) IsElementOf SCM registered-services
For All (SM, SD, SCM):

 SCM IsElementOf SM discovered-SCMs & (CC3)
 (SM, SD) IsElementOf SCM registered-services &
 NOT (SCM IsElementOf SM persistent-list)

 implies Intersection (SM GroupsToJoin, SCM GroupsMemberOf)
For All (SM, SD, SCM, SU, NR):
 (SU, NR) IsElementOf SCM requested-notifications & (CC4)

(SM, SD) IsElementOf SCM registered-services &
 Matches((SM, SD), (SU,NR))

 implies (SM, SD) IsElementOf SU matched-services

For All (SM, SD, SCM):
 (SM, SD) IsElementOf SCM registered-services (CC1)
 implies SCM IsElementOf SM discovered-SCMs

For All (SM, SD, SCM):
 SCM IsElementOf SM discovered-SCMs & (CC2)
 (SD) IsElementOf SM managed-services

 implies (SM, SD) IsElementOf SCM registered-services
For All (SM, SD, SCM):

 SCM IsElementOf SM discovered-SCMs & (CC3)
 (SM, SD) IsElementOf SCM registered-services &
 NOT (SCM IsElementOf SM persistent-list)

 implies Intersection (SM GroupsToJoin, SCM GroupsMemberOf)
For All (SM, SD, SCM, SU, NR):
 (SU, NR) IsElementOf SCM requested-notifications & (CC4)

(SM, SD) IsElementOf SCM registered-services &
 Matches((SM, SD), (SU,NR))

 implies (SM, SD) IsElementOf SU matched-services

Consistency
Conditions

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

• Deploy models of two-party (UPnP) and three-party (Jini) architectures with
one SM and five SUs (for Jini include two topologies – one and two SCMs).

• Ensure initial discovery and information propagation completed.

• Introduce a change in the service description at the SM, and establish a
deadline for propagating the new information to all SUs.

• Measure the number of messages exchanged and the latency required to
propagate the information to all SUs, or until the deadline arrives, under
two different propagation mechanisms: polling and eventing.

• Repeat this experiment while varying the percentage of interface failure
time for each node up to 75% (in increments of 5%).

Understanding Consistency Maintenance in Discovery Understanding Consistency Maintenance in Discovery
Architectures during Interface FailureArchitectures during Interface Failure
How do various service discovery architectures, topologies, and fault-recovery

mechanisms perform under deadline during interface failure?

Outline of ExperimentOutline of Experiment

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

TwoTwo--Party (UPnP) Topology for ExperimentParty (UPnP) Topology for Experiment

HTTP/TCP Unicast Links
Service

User
Service

Manager

UPnP Multicast Group

Five SUs One SM

HTTP/UDP Unicast Links

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

ThreeThree--Party (Party (JiniJini) Topologies for Experiment) Topologies for Experiment

Service
Manager

Service
User

Service
Cache

Manager

Aggressive Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy Discovery Multicast Group

Optional
2nd SCM

One SCM

One SM

Five SUs

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Failures Interfere with Discovery and Information PropagationFailures Interfere with Discovery and Information Propagation

� Interface Failure – Tx, Rx, or Both
� Due to nearby enemy jamming or other interference
� Due to multi-path fading during mobility

� Path Loss – Pt-Pt or Area-Area and Full-duplex or Half-duplex
� Due to persistent congestion
� Due to physical link cuts
� Due to enemy jamming at routers

� Message Loss – under both UDP and TCP (>delay)
� Due to sporadic or distant enemy jamming or other interference
� Due to transient congestion
� Due to multi-path fading during mobility

� Node Failure – Partial or Complete with variable persistence of information
� Due to enemy bombardment or cyber attacks
� Due to mobility associated with military operations

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Discovery Systems Divide Recovery Responsibilities: Discovery Systems Divide Recovery Responsibilities:
Lower Layers, Discovery Protocol, and ApplicationLower Layers, Discovery Protocol, and Application

� Selective Reliable Delivery by Lower Layers
� TCP attempts retransmissions (basis for Jini-RMI and UPnP-HTTP/TCP)
� UDP messages in UPnP sent as multiple copies

� Periodic Announcements by Discovery Protocol
� Allows caching nodes to discard information when TTL expires
� Jini includes aggressive search at node start up, while UPnP permits

nodes to undertake aggressive search at any time

� Periodic Refreshing of Resources Required by Discovery Protocol
� Allows resource owner to free resource when refresh period expires

� Remote Exceptions Issued by Protocol Over TCP Links
� Allows application to take recovery action: Ignore? Retry? Discard

knowledge of service or resource?

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m
ConsistencyConsistency--Maintenance Mechanisms for ExperimentMaintenance Mechanisms for Experiment

Two
Party

Three
Party

Polling Eventing

SM SU

Get Description

Get Description

Get Description

Change
Service

SM SU
Notification Request

Get Description

Get DescriptionChange
Service

Notification

SM SU

Find Service

Find Service

SCM

Find Service
Change Service

SM SU

Notification
Request

Notification

SCM

Find Service

Change Service

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m
InterfaceInterface--Failure Model for ExperimentFailure Model for Experiment

Q = end of quiescent period (100 s in our experiment)
D = propagation deadline (5400 s in our experiment)
F = Interface Failure Rate (variable from 0% - 75% in 5% increments in our experiment)

1. Choose a time to introduce the change [uniform(Q, D/2)]
2. For each node, choose a time to introduce an interface failure

[uniform(Q, D-(D*F))]
3. When each interface failure occurs, choose the scope of

the failure, where each of [Rx, Tx, Both] has an equal probability

Random
Processes

TIME

D-(D*F)0 Q DD/2

Discovery
occurs &
initial
information
propagated

Change introduced
sometime in this
interval

Interface failures occur sometime
during this interval

Interface failures
repaired after
appropriate time

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Our Modeled Responses to Remote Exceptions Our Modeled Responses to Remote Exceptions
(“Approximate” – see addendum for details)

� Ignore REX Received
� When replying to a remote-method invocation
� When attempting to cancel a lease
� When attempting to renew a lease (But then attempt to obtain a new lease)

� Retry Operation for Some Period of Time - Then Quit If Not Successful
� When attempting to register for notification events
� When a UPnP SU requests service descriptions
� When Jini SM attempts to register service or change service on SCM

� Eliminate Local Knowledge of Discovered Entity
� When remote exceptions occur for too long a period
� When UPnP SU fails to hear scheduled SM announcement

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m
Metrics Devised for ConsistencyMetrics Devised for Consistency--Maintenance ExperimentsMaintenance Experiments

(see addendum for formal definitions)

� Update Responsiveness (R)
Assuming that information is created at a particular time and must be propagated
by a deadline, then the difference between the deadline and the creation time
represents available time in which to propagate the information. Update
Responsiveness, R, measures the proportion of the available time remaining after
the information is propagated. [1 = all time remains and 0 = no time remains]

� Update Effectiveness (U)
Update Effectiveness, U, measures the probability that information will propagate
successfully to a SU before some deadline, D. [1 = information will be propagated
and 0 = information will not be propagated]

� Update Efficiency (E)
Given a specific topology of SUs and SMs in a discovery system, examination of
the available architectures (two-party and three-party) and mechanisms (polling
and eventing) will reveal a minimum number of messages that need to be sent to
propagate information from all SMs to all SUs in the topology. Update Efficiency,
E, can be measured as the ratio of the minimum number of messages needed to
the actual number of messages observed. [1 = only minimum number of
messages needed and 0 = infinite number of messages needed]

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m
Median Update ResponsivenessMedian Update Responsiveness
UPnP (2UPnP (2--Party) vs. Party) vs. JiniJini (3(3--Party)Party)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80
Interface Failure Rate (%)

M
ed

ia
n

U
pd

at
e

R
es

po
ns

iv
en

es
s

2-Party Notification

2-Party Polling

3-Party Notification 1 SCM

3-Party Polling 1 SCM

3-Party Notification 2 SCMs

3-Party Polling 2 SCMs

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m
Update EffectivenessUpdate Effectiveness

UPnPUPnP (2(2--Party) vs. Party) vs. JiniJini (3(3--Party)Party)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80
Interface Failure Rate (%)

U
pd

at
e

Ef
fe

ct
iv

en
es

s

2-Party Notification
2-Party Polling
3-Party Notification 1 SCM
3-Party Polling 1 SCM
3-Party Notification 2 SCMs
3-Party Polling 2 SCMs

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Average Update EfficiencyAverage Update Efficiency
UPnP (2UPnP (2--Party) vs. Party) vs. JiniJini (3(3--Party)Party)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80
Interface Failure Rate (%)

Av
er

ag
e

U
pd

at
e

Ef
fic

ie
nc

y 2-Party Notification

2-Party Polling

3-Party Notification 1 SCM

3-Party Polling 1 SCM

3-Party Notification 2 SCMs

3-Party Polling 2 SCMs

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m
Summary of Progress to DateSummary of Progress to Date

� Models of service-discovery protocols (written in the Rapide architecture-
description language) :
� Jini (models the Sun Microsystems version 1.1 specification)
� UPnP (models the Microsoft version 1.0 specification)

� Papers
� “Analyzing Properties and Behavior of Service Discovery Protocols Using

an Architecture-based Approach”, C. Dabrowski and K. Mills, Proceedings
of Working Conference on Complex and Dynamic Systems Architectures

� “Understanding Consistency Maintenance in Service Discovery Architectures
during Communication Failure”, C. Dabrowski, K. Mills, and J. Elder,
submitted to the 3rd International Workshop on Software Performance.

� “Survivable Software for Harsh Environments”, C. Dabrowski, K. Mills, and
J. Elder, submitted to MILCOM 2002.

� Interactions
� Gave an invited “Tech-a-Tech” presentation to Sun Jini team
� Presented work at 2001 Pervasive Computing Conference
� Obtained co-funding from DARPA and ARDA

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Modeling
� Complete (SLX) discrete-event simulation model for UPnP
� Validate model against current results from Rapide model
� Develop SLX simulation models for Jini and SLP
� Extend generic structural model of service discovery protocols to include

message exchanges and consistency conditions, and publish the extended
generic model

Analysis
� Investigate consistency maintenance in Jini and UPnP models under

increasing message-loss rate
� Investigate consistency maintenance in Jini and UPnP models under node

and thread failure
� Propose, model, and evaluate selected self-adaptive mechanisms for UPnP
� Consider analytical model for update effectiveness during interface failure

Plans for Upcoming YearPlans for Upcoming Year

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Slides Containing Additional Details Slides Containing Additional Details
on Consistencyon Consistency--Maintenance ExperimentsMaintenance Experiments

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Equating a Generic Structural Model of Service Discovery Equating a Generic Structural Model of Service Discovery
Architectures to Selected Commercial Discovery SystemsArchitectures to Selected Commercial Discovery Systems

Service RegistrationDevice/Service DescriptionService ItemService Description

Directory Service Agent
(optional)

not applicableLookup ServiceService Cache Manger

Service URL
Service Type
Service Attributes
Template URL
Template URL

Universal Unique ID
Device/Service Type
Device/Service Schema
Presentation URL
Control/Event URL

Service ID
Service Type
Attribute Set
Service Applet
Service Proxy

Identity
Type
Attributes
User Interface
Program Interface

ServiceDevice or ServiceServiceService Provider

Service AgentRoot DeviceService or
Device Proxy

Service Manager

User AgentControl PointClientService User

SLPUPnPJiniGeneric Model

Service RegistrationDevice/Service DescriptionService ItemService Description

Directory Service Agent
(optional)

not applicableLookup ServiceService Cache Manger

Service URL
Service Type
Service Attributes
Template URL
Template URL

Universal Unique ID
Device/Service Type
Device/Service Schema
Presentation URL
Control/Event URL

Service ID
Service Type
Attribute Set
Service Applet
Service Proxy

Identity
Type
Attributes
User Interface
Program Interface

ServiceDevice or ServiceServiceService Provider

Service AgentRoot DeviceService or
Device Proxy

Service Manager

User AgentControl PointClientService User

SLPUPnPJiniGeneric Model

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

The Six Combinations of Architecture, Topology, and The Six Combinations of Architecture, Topology, and
ConsistencyConsistency--Maintenance Mechanism Used in ExperimentsMaintenance Mechanism Used in Experiments

Notification (with service registration and
notification registration on SCM)

JiniThree-Party (Dual SCM)
Polling (with service registration on SCM)JiniThree-Party (Dual SCM)

Notification (with service registration and
notification registration on SCM)

JiniThree-Party (Single SCM)
Polling (with service registration on SCM)JiniThree-Party (Single SCM)

Notification (with notification registration
on SM)

UPnPTwo-Party
PollingUPnPTwo-Party

Consistency-Maintenance MechanismProtocol BasisArchitectural Variant

Notification (with service registration and
notification registration on SCM)

JiniThree-Party (Dual SCM)
Polling (with service registration on SCM)JiniThree-Party (Dual SCM)

Notification (with service registration and
notification registration on SCM)

JiniThree-Party (Single SCM)
Polling (with service registration on SCM)JiniThree-Party (Single SCM)

Notification (with notification registration
on SM)

UPnPTwo-Party
PollingUPnPTwo-Party

Consistency-Maintenance MechanismProtocol BasisArchitectural Variant

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Specific Division of FailureSpecific Division of Failure--Recovery Responsibilities Recovery Responsibilities
Used in ExperimentsUsed in Experiments

Three-Party
Architecture (Jini)

Two-Party
Architecture (UPnP)

Recovery
Mechanism

Responsible
Party

SU and SM: purge SCM after
540 s of continuous
REX

SU: purge SD after failure to
receive SM announcement
within 1800 s

Discard
Knowledge

SM: depositing or refreshing SD
copy on SCM retry in 120s

SU: registering and refreshing
notification requests with SCM
retry in 120 s

SU: HTTP Get after discovery
retry in 180 s (retries < 3)

Subscribe requests retry in
120s

Retry after
REX

SU: FindService Poll
SCM: Notification

SU: HTTP Get Poll
SM: Notification

Ignore REX

Application
Software

SU and SM: issue seven probes
(at 5 s intervals) only
during startup

SU: issues Msearch every 120 s
(after purging SD)

Aggressive
Discovery

SCM: announces every 120 sSM: announces with n (3+2d+k)
messages every 1800 s

Lazy
Discovery

Discovery
Protocols

Issue REX in 30-75 sIssue REX in 30-75 sTCP
No recoveryNo recoveryUDPLower-Layer

Protocols

Three-Party
Architecture (Jini)

Two-Party
Architecture (UPnP)

Recovery
Mechanism

Responsible
Party

SU and SM: purge SCM after
540 s of continuous
REX

SU: purge SD after failure to
receive SM announcement
within 1800 s

Discard
Knowledge

SM: depositing or refreshing SD
copy on SCM retry in 120s

SU: registering and refreshing
notification requests with SCM
retry in 120 s

SU: HTTP Get after discovery
retry in 180 s (retries < 3)

Subscribe requests retry in
120s

Retry after
REX

SU: FindService Poll
SCM: Notification

SU: HTTP Get Poll
SM: Notification

Ignore REX

Application
Software

SU and SM: issue seven probes
(at 5 s intervals) only
during startup

SU: issues Msearch every 120 s
(after purging SD)

Aggressive
Discovery

SCM: announces every 120 sSM: announces with n (3+2d+k)
messages every 1800 s

Lazy
Discovery

Discovery
Protocols

Issue REX in 30-75 sIssue REX in 30-75 sTCP
No recoveryNo recoveryUDPLower-Layer

Protocols

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Significant Parameters and Values Used in ExperimentsSignificant Parameters and Values Used in Experiments

100 us for cache items
10 us for other items

Per-item processing
delay

10-100 us uniformTCP transmission delay

10 us constantUDP transmission
delay

Transmission and
processing delays

5% increments of 5400 s
from 0 to 75%

Failure duration

Transmitter, receiver, or
both with equal likelihoodFailure scope

Once per run for each nodeFailure incidence

Interface failure
parameters

After 540 s with only REXSM or SU purges SCM
120 sAnnounce interval

5 s (7 times)Probe intervalJini-specific
behavior for three-
party architecture

At TTL expirationSU purges SD
120 sMsearch query interval
1800 sAnnounce intervalUPnP-specific

behavior for two-
party architecture

120 sTime to retry after
REX (if applicable)

1800 sRegistration TTL
180 sPolling interval

Behavior in both
two- and three-
party architectures

ValueParameter

100 us for cache items
10 us for other items

Per-item processing
delay

10-100 us uniformTCP transmission delay

10 us constantUDP transmission
delay

Transmission and
processing delays

5% increments of 5400 s
from 0 to 75%

Failure duration

Transmitter, receiver, or
both with equal likelihoodFailure scope

Once per run for each nodeFailure incidence

Interface failure
parameters

After 540 s with only REXSM or SU purges SCM
120 sAnnounce interval

5 s (7 times)Probe intervalJini-specific
behavior for three-
party architecture

At TTL expirationSU purges SD
120 sMsearch query interval
1800 sAnnounce intervalUPnP-specific

behavior for two-
party architecture

120 sTime to retry after
REX (if applicable)

1800 sRegistration TTL
180 sPolling interval

Behavior in both
two- and three-
party architectures

ValueParameter

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Console Output from a Sample Experiment RunConsole Output from a Sample Experiment Run
Rate - 5
Run number - 21

SM 1 OUT Interface down 365, up 635

SCM 1 OUT Interface down 2417, up 2687
SCM 2 IN & OUT Interface down 519, up 789

SU 1 IN Interface down 2238, up 2508
SU 2 IN Interface down 3256, up 3526
SU 3 IN Interface down 207, up 477
SU 4 OUT Interface down 2876, up 3146
SU 5 IN Interface down 4478, up 4748

Performance:

SM 1 346.00000 346.00000 6 17
SCM 1 346.00000 346.00016 61 102
SCM 2 346.00000 346.00015 61 105
SU 1 346.00000 346.00109 0 11
SU 2 346.00000 346.00109 0 11
SU 3 346.00000 5400.00000 4 11
SU 4 346.00000 346.00109 0 11
SU 5 346.00000 346.00114 0 11

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Update Responsiveness (Update Responsiveness (RR))

Let D be a deadline by which we wish to propagate information to each
service user (SU) node (n) in a service discovery topology.

Let tC be the creation time of the information that we wish to propagate, where tC < D.

Let tU(n) be the time that the information is propagated to SU n, where n = 1 to N, and
N is the total number of SUs in a service discovery topology.

Define information-propagation latency (L) for an SU n as:

Ln = (tU(n) - tC)/(max(D, tU(n)) – tC).

Define update responsiveness (R) for an SU n as:

Rn = 1 – Ln.

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Update Effectiveness (Update Effectiveness (UU))

Let the definitions related to Update Responsiveness, R, hold.

Let X represent the number of runs during which a particular service discovery
topology is observed under identical conditions.

Recalling that N is the total number of SUs in a service discovery topology,
define the number of SUs observed under identical conditions as:

O = X .N.

Define the probability of failure to propagate information to an SU as:

P(F) = (count(Ri,j == 0))/O, where i = 1..N and j = 1..X.

Define the Update Effectiveness for a given set of conditions as:

U = 1 – P(F).

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Update Efficiency (Update Efficiency (EE))

Let the preceding definitions associated with Update Responsiveness and Update
Effectiveness hold.

Let M be the minimum number of messages needed to propagate information from
all SMs to all SUs.

Let S be the observed number of messages sent while attempting (failures may occur)
to propagate information from all SMs to all SUs in a given run of the topology.

Define average Update Efficiency as:

Eavg = (sum(M/Sk))/X, where k = 1..X.

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Summary Statistics for Performance of Summary Statistics for Performance of
Each Combination on Each MetricEach Combination on Each Metric

0.1100.9270.587Three-Party Polling
(Dual SCM)

0.2210.9420.655Three-Party Notification
(Dual SCM)

0.2010.9110.530Three-Party Polling
(Single SCM)

0.3890.8940.601Three-Party Notification
(Single SCM)

0.2510.9730.615Two-Party Polling

0.2120.9210.663Two-Party Notification

Average
EfficiencyEffectivenessMedian

Responsiveness

Mean (across all interface-failure rates)

0.1100.9270.587Three-Party Polling
(Dual SCM)

0.2210.9420.655Three-Party Notification
(Dual SCM)

0.2010.9110.530Three-Party Polling
(Single SCM)

0.3890.8940.601Three-Party Notification
(Single SCM)

0.2510.9730.615Two-Party Polling

0.2120.9210.663Two-Party Notification

Average
EfficiencyEffectivenessMedian

Responsiveness

Mean (across all interface-failure rates)

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

95% C.I. for Each Metric95% C.I. for Each Metric--Combination Combination
at Selected Failure Ratesat Selected Failure Rates

EfficiencyEffectivenessResponsiveness

0.391
0.543

0.562
1.000

0.244
0.412

0.605
1.000

0.501
0.849

0.561
0.783

40%

0.056
0.096

0.099
0.143

0.043
0.083

0.042
0.095

0.076
0.138

0.111
0.162

75%

0.974
0.986

1.000
1.000

0.974
0.980

1.000
1.000

0.975
0.980

1.000
1.000

5%

0.033
0.103

0.035
0.290

0.043
0.173

0.099
0.504

0.031
0.230

0.065
0.220

40%

0.660
0.753

0.730
0.803

0.660
0.753

0.521
0.652

0.760
0.826

0.709
0.787

75%

1.000
1.000

0.970
0.977

1.000
1.000

0.993
0.993

1.000
1.000

0.970
0.977

5%

0.019
0.059

0.218
0.273

0.939
0.955

Three-Party Polling
(Dual SCM)

0.009
0.096

0.335
0.599

0.977
0.983

Three-Party Notification
(Dual SCM)

0.040
0.164

0.387
0.512

0.946
0.960

Three-Party Polling
(Single SCM)

0.033
0.320

0.827
1.000

0.939
0.955

Three-Party Notification
(Single SCM)

0.042
0.059

0.501
0.666

0.993
0.993

Two-Party Polling

0.031
0.354

0.354
0.467

0.954
0.966

Two-Party Notification

75%5%40%.

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Slides Outlining Four Issues Shared With Sun Slides Outlining Four Issues Shared With Sun
Based on Exploring Correctness of our Based on Exploring Correctness of our Jini Jini ModelModel

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

SUs SUs Registered for Notifications Should Receive ThemRegistered for Notifications Should Receive Them

Sample Consistency Condition #4 (Service Notification)

For All (SM, SD, SCM, SU, NR):
(SU, NR) IsElementOf SCM requested-notifications &
(SM, SD) IsElementOf SCM registered-services &
Matches ((SM, SD), (SU, NR))

implies (SM, SD) IsElementOf (SU matched-services)*

…that is, if an SU has requested notification with a Service Cache Manager of a
service that matches a service description registered by a Service Manager on
the same Cache Manager, then that service description should be provided to the
Service User.

*Assuming absence of network failure and normal delays due to updates

• SM is Service Manager
• SD is Service Description
• SCM is Service Cache Manager
• SU is Service User
• NR is Notification Request

• requested-notifications is a set of (SU,NR) pairs
maintained by the SCM

• registered-services is a set of (SM,SD) pairs
maintained by the SCM

• matched-services is the set of (SM,SD) pairs
maintained by the SU

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m
Should the Jini Specification Advise about Possibility for

Registration Race Condition?

For All (SM, SD, SCM, SU, NR):
 (SU, NR) IsElementOf SCM requested-notifications & (CC4)

(SM, SD) IsElementOf SCM registered-services &
 Matches((SM, SD), (SU,NR))
 implies (SM, SD) IsElementOf SU matched-services

Scenario SU7 SCM1

Found (none)

Find X

AddSCM SCM1

Notify SCM1 X Added

Discover SCM1

Found SCM1

Request AddedMatched Services
() +

Notify SU7 X Added Registered Services
(SM4, SD1, X)+

Requested
Notifications

(SU7, X)

CC4 Violated

SM4

FindService SCM1 X

AddSCM SCM1

Discover SCM1

Found SCM1

Register SM4 SD1 X

Scenario SU7 SCM1

Found (none)

Find X

AddSCM SCM1

Notify SCM1 X Added

Discover SCM1

Found SCM1

Request AddedMatched Services
() +

Notify SU7 X Added Registered Services
(SM4, SD1, X)+

Requested
Notifications

(SU7, X)

CC4 Violated

SM4

FindService SCM1 X

AddSCM SCM1

Discover SCM1

Found SCM1

Register SM4 SD1 X

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m
Discovered Discovered SCMs SCMs Should Be Members of Same Group As Should Be Members of Same Group As

Discovering EntityDiscovering Entity
Sample Consistency Condition #3 (Intersecting Group Membership)

For All (SM, SD, SCM):
SCM IsElementOf SM discovered-SCMs
(SM, SD) IsElementOf SCM registered-services
NOT (SCM IsElementOf SM persistent-list)
implies Intersection (SM GroupsToJoin, SCM GroupsMemberOf)*

…that is, if a Service Manager has discovered, and registered its service
descriptions on, a Service Cache Manager that is not on the Service Manager’s
persistent list, then the Service Manager must be seeking group membership in
at least one group the Service Cache Manager belongs to.

*Assuming absence of network failure and normal delays due to updates

• SM is Service Manager
• SD is Service Description
• SCM is Service Cache Manager

• registered-services is a set of (SM,SD) pairs
maintained by the SCM

• discovered-SCMs is a set of SCMs discovered
by the SM

• Persistent-list is the set of SCMs the SM is
seeking though directed discovery

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m
What Might Happen When

SCM Changes Group Membership Dynamically?

For All (SM, SD, SCM):
 SCM IsElementOf SM discovered-SCMs & (CC3)
 (SM, SD) IsElementOf SCM registered-services &
 NOT (SCM IsElementOf SM persistent-list)

 implies Intersection (SM GroupsToJoin, SCM GroupsMemberOf)

Scenario SM4 SCM1

GroupJoin GROUP1
Probe SM4 GROUP1

Groups To Join
(GROUP1)

Registered Services
(SM4, SD1)

AdminDeleteGroup GROUP1

Group Membership
(GROUP1, GROUP2)+

+

Register SM4 SD1
+

CC3 Violated

-

Found GROUP 1 SCM1

Group Membership
(GROUP2)

Discovered SCMs
MD (SCM1)

DD ()

Groups To Join
(GROUP1)

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Jini Jini Entities Should Only Register with Discovered Entities Should Only Register with Discovered SCMsSCMs

Sample Consistency Condition #1(Register Only with Discovered SCMs)

For All (SM, SD, SCM): (SM, SD) IsElementOf SCM registered-services
implies SCM IsElementOf SM discovered-SCMs*

…that is, a Service Manager should register its Services on an Service
Cache Manager only if it maintains that Cache Manager on its “known
SCM” LIst.

*Assuming absence of network failure and normal delays due to updates

• SM is Service Manager
• SD is Service Description
• SCM is Service Cache Manager

• registered-services is a set of (SM,SD) pairs
maintained by the SCM

• discovered-SCMs is a set of SCMs discovered
by the SM

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m
Could the Jini Specification Lead to Implementations Exhibiting

Undesired Interaction between Directed and Multicast Discovery?

Based on one
possible
interpretation of
specification using
a single-list
assumption

For All (SM, SD, SCM):
 (SM, SD) IsElementOf SCM registered-services (CC1)
 implies SCM IsElementOf SM discovered-SCMs

Scenario SM4 SCM3

GroupJoin GROUP2

Found SCM3 GROUP2Discovered SCMs
(SCM3) Register SM4 SD1 Registered Services

(SM4, SD1)

AddSCM SCM3

GroupLeave GROUP2 Discover SCM3

Cancel SM4 SD1

Registered Services
()Found SCM3

Cancelled SM4 SD1

Discovered SCMs
(SCM3)

Discovered SCMs
()

+

+

+

-

- Register SM4 SD1 Registered Services
(SM4, SD1)+

CC1 Violated

Registered Services
()-

Lease Expired
SM4 SD1

Probe SM2 GROUP2

Consistency Restored

No Duplicates Allowed

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m
Jini Jini Entities Should Register with All Discovered Entities Should Register with All Discovered SCMs SCMs

about which they maintain knowledgeabout which they maintain knowledge

Sample Consistency Condition #2 (Register Service with Discovered SCMs)

For All (SM, SD, SCM):
SCM IsElementOf SM discovered-SCMs &
SD IsElementOf SM managed-services

implies (SM, SD) IsElementOf SCM registered-services*

…that is, a Service Manager should register its Services on an Service
Cache Manager if the Service Manager has discovered the Cache Manager
and is maintaining the SCM identifier on its “known SCM” LIst.

*Assuming absence of network failure and normal delays due to updates

• SM is Service Manager
• SD is Service Description
• SCM is Service Cache Manager

• discovered-SCMs is a set of SCMs discovered
by the SM

• managed-services is a set of (SM,SD) pairs
maintained by the SM

• registered-services is the set of (SM, SD) pairs
maintained by the SCM

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Based on a second
possible
interpretation of
specification using
separate-list
assumption

Scenario SM4 SCM1

GroupJoin GROUP1 Probe SM4 GROUP1

Discovered SCMs
MD()

DD (SCM1)
Register SM4 SD1

Registered Services
(SM4, SD1)

AddSCM SCM1

GroupLeave GROUP1

Discover SCM1

Registered Services
()

Found SCM1

Cancelled SM4 SD1

Discovered SCMs
MD (SCM1)
DD (SCM1)

Discovered SCMs
MD ()

DD (SCM1)

+

+

+

-

-

Register SM4 SD1

Registered Services
(SM4, SD1)+

CC2 Violated

Registered Services
()-

Found GROUP 1 SCM1

Cancel SM4 SD1

For All (SM, SD, SCM):
 SCM IsElementOf SM discovered-SCMs & (CC2)
 (SD) IsElementOf SM managed-services
 implies (SM, SD) IsElementOf SCM registered-services

Could the Jini Specification Lead to Implementations Exhibiting
Undesired Interaction between Directed and Multicast Discovery?

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Slides Describing Performance Measurement Results Slides Describing Performance Measurement Results
from from Jini Jini and UPnP Implementationsand UPnP Implementations

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Measurement MethodologyMeasurement Methodology
• SDP Architectures & Protocols Differ Considerably

– Directory based vs flat peer-to-peer (combinations)
– Java RMI and Serialized Objects vs. HTTP/SOAP/GENA and XML

• How to reasonably compare the performance of such diverse technologies?

• Usage-Based Scenarios & Metrics
– Service initiation – restart, auto configuration, advertisement, renewal
– Client active query – restart, by name, single instance, multiple instances, all instances
– Client passive monitoring – persistent query for new instances, network restart
– Event Notification and control – registration latency, notification latency, distributed control

performance (control + event notification).

• SDP-Independent Benchmark Service –
– Simple counting device/service that can be used to exercise all significant

discovery/control capabilities of Jini and UPnP.
– Supports – get/set service, GUIDs/attributes/type, control, event notification, GUI

• Implementation-Independent Measurement Tools.
– Measure on-the-wire
– Response/Load

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Synthetic Workload Generation Tools

• Objective – Emulate large, dynamic environments of 100’s of
devices/services and 10’s of control points / clients.

– Dynamic devices providing the benchmark service.
– Scripted control points execute measurement scenarios.

S SSS S S S

M DD C C C

TSTS

TS TS TS• SDP Experimenters Toolkits
–Drive real SDP implementations
–Emulate the behavior of a large number of

dynamic devices
–Emulate the behavior control points/

scripted behavior for testing
– Jini & UPnP Initial development complete

– SunMS Jini, Intel UPnP on Linux platforms.
– Target of 100’s of devices and 10’s of

control points met.

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m Sample Measurement Results
Notes:

• Example results of Client Active Query scenarios.

• Query experiments measure latency / load through the client download of
the service proxy / description.

• Results show two scenarios for Jini

• Jini Restart – includes overhead of client discovery and first access of
look up server.

• Jini – query from “warm” client, after lookup server Discovery has
completed.

• Default UPnP jitter value is 2.5 seconds

• In device poll experiment, jitter values of 5.5 sec (64 services) and 11
sec (128 services) were used.

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Linux UPnP Scaling Problems
• Problems encountered in achieving initial scaling goals for device

emulation tools.
– UPnP scalability above 40 devices a function of protocol tuning parameters

(e.g., response jitter, multicast retransmission factor).
– Errors in implementation of jitter algorithms

UPnP Jitter Sensitivity

30

40

50

60

70

80

90

100

110

120

130

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10
.5

11
.5

12
.5

13
.5

14
.5

Jitter (sec)

Av
g

 o

f
Se

rv
ic

es
 D

is
co

ve
re

d
(1

28
 a

ct
iv

e)

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Latency: Query by Unique ID

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120 140

Active Services

Av
g

Re
sp

on
se

 T
im

e
(s

ec
)

Jini Restart
UPnP
Jini

Some Example Results: Jini vs UPnP Discovery

Performance of Query for Specific Service: “Find service X”

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Utilization: Query by Unique ID

0

10000

20000

30000

40000

50000

60000

70000

80000

0 20 40 60 80 100 120 140

Active Services

Av
g

Ne
tw

or
k

Lo
ad

 (b
yt

es
)

Jini Restart
UPnP
Jini

Some Example Results: Jini vs UPnP Discovery

Performance of Query for Specific Service: “Find service X”

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Latency Query for 1 Service of Type X

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20 40 60 80 100 120 140

Active Services

Av
g

Re
sp

on
se

 T
im

e
(s

ec
)

Jini Restart
UPnP
Jini

Some Example Results: Jini vs UPnP Discovery

Performance of “anycast” Query: “Find one instance of type X”

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Utilization: Query for 1 Service of Type X

0

50000

100000

150000

200000

250000

300000

0 20 40 60 80 100 120 140

Active Services

Av
g

Ne
tw

or
k

Lo
ad

 (b
yt

es
)

Jini Restart
UPnP
Jini

Some Example Results: Jini vs UPnP Discovery

Performance of “anycast” Query: “Find one instance of type X”

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Latency: Query All Services

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 120 140

Active Services

Av
g

Re
sp

on
se

 T
im

e
(s

ec
)

Jini Restart
UPnP
Jini

5.5

11

2.5

Some Example Results: Jini vs UPnP Discovery

Performance of Service/Device Poll: “Find all active services”

N
IS

T
IT

L
 P

er
va

si
ve

 C
o

m
p

u
ti

n
g

 P
ro

g
ra

m

Utilization: Query All Services

0

200000

400000

600000

800000

1000000

1200000

1400000

0 20 40 60 80 100 120 140

Active Services

Av
er

ag
e

Ne
tw

or
k

Lo
ad

 (b
yt

es
)

Jini Restart
UPnP
Jini

Some Example Results: Jini vs UPnP Discovery

Performance of Service/Device Poll: “Find all active services”

